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ABSTRACT 
 
The mathematics which describe the vibroacoustic behavior of cylindrical structures are imposing to 
say the least.  Part 1 of this practical tutorial demystifies cylindrical shell vibration theory by using 
measured data from actual shells and pipes to explain key concepts.  For any shell, you can estimate 
frequency ranges where shells behave like simple beams and flat plates, greatly simplifying 
calculations of modes of vibration and mobilities.  The key is first calculating the ring frequency – 
the frequency where membrane waves can propagate fully around the shell circumference.  Simple 
infinite structure theory may then be used to compute mean mobilities for beam, shell, and flat plate 
behavior.  Modes of vibration for a cylinder depend on both longitudinal and circumferential 
harmonics, or a helical wavenumber.  Cremer’s simple approximate resonance frequency formula is 
used to show examples for a large diameter short shell and a small diameter long shell (a pipe).  In 
all cases in this tutorial, measurements and simple estimates agree well, showing that cylindrical 
shell vibrations may be estimated without difficult math or complex computer models.  

 
1.    INTRODUCTION 

This is the first of two tutorials on one of the most complex topics in vibroacoustics – cylindrical 
shell structures.  Those of you who have already read papers or books on cylindrical shell vibration 
theory have seen already how complicated the equations are.  Not only are simple physical insights 
not obvious when working with these equations, but they are quite difficult to implement properly in 
computer codes (at least they were for me the first time I tried it as a PhD student many years ago). 
 
This tutorial takes a different approach.  Of course, I’ll show you the basic equations of motion, but 
rather than discuss them in detail I will show you some examples of structural mobilities, mode 
shapes, and resonance frequencies.  I will then highlight some of the key quantities that govern how 
shells vibrate and show you some miraculous and simple formulae you can use to approximate that 
vibration.  You’ll also learn about the nomenclature of cylindrical shell modes and see when they 
occur for two types of shells – a large diameter small thickness shell, and a small diameter, thick, 
long shell (a pipe). 
 
This is the latest in a series of tutorial articles I have written, including the original two tutorials for 
Acoustics Today magazine [1, 2] and several others at Inter-noise conferences.  You can download 
them from hambricacoustics.com.  For even more on vibroacoustics, see [3]. 
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2.    CYLINDRICAL SHELL BASIC THEORY 

Figure 1 shows a schematic of a finite cylindrical shell of half-length L, radius a, and thickness h.  
The motion is defined in a cylindrical coordinate system, with z pointing along the shell axis, r 
radially, and  rotationally.  The corresponding vibrations in those directions are u, w, and v.  We 
are mainly interested in how to calculate radial motion w since that couples with interior and/or 
exterior acoustic spaces (more on this in part 2 of the tutorial).  However, as we are about to learn 
calculating radial motion in a shell requires also calculating the in-plane motion. 

 
Figure 1:  Cylindrical shell dimensions and coordinate system. 

 
 

Donnell’s structural equations of motion2 at the shell midsurface for a general exterior pressure 
loading pa are: 

 

 
 
where: 

 
 

2 For details on Donnell’s and other formulations (there are several), I highly recommended Leissa’s book 
[4]. 



I have color coded the vibration directions as: 
 
- red for in-plane axial motion, 
- blue for in-plane twisting/torsional motion, and 
- green for transverse (radial) motion. 
 

Don’t worry, we won’t be discussing all the details of this horrifying set of equations.  Instead, just 
notice that: 

 
- the in-plane axial and twisting parts look like simple wave equations with second order spatial 

derivatives in cylindrical coordinates (see the like-colored boxes), with ‘cross-terms’ from the 
other directions (the other colors); and 

- the transverse part looks like a flexural/bending wave equation with fourth order spatial 
derivatives, but again with cross-terms from the other directions. 

 
The cross-terms mean that in-plane motion is coupled to transverse motion – this is a key to 
understanding how curved structures vibrate.  Consider what happens if you pull on the shell in Figure 
1 axially.  Not only will the shell deform in the axial direction, but the Poisson effect of the material 
will cause it to pull inward.  Push on the shell and it will bulge outward.  The same thing happens if 
you twist the shell – the walls will deflect radially.  These effects are ignored for flat plates, but cannot 
be for curved shells. 
 
In other articles and books on shell theory, more painful derivations follow, all leading to complex 
series of equations spanning several pages which allow you to estimate vibrations and radiated sound 
(if you implement them properly that is).  These are not for the faint of heart and can confound even 
seasoned PhDs in vibroacoustics.  This tutorial, however, is intended to explain shell theory through 
simple examples, and give you just enough background and insight to approximate vibrations and 
modes for any shell. 
 
3.    MOBILITIES 

Cylindrical shell geometries are commonly defined by ratios like length to radius (L/a) and thickness 
to radius (h/a).  Ben Doty in his MS thesis [5] and NoiseCon articles [6,7] describes a series of in-air 
and in-water measurements he made on two cylindrical shell steel structures shown in Figure 2 and 
Table 1 – one a large diameter, small thickness shell; and the other a small diameter, large thickness 
shell (a pipe).  Ben’s pipe has the added complication of an elbow, which makes it ‘doubly curved’.  
We won’t focus on this aspect here though. 
 
Let’s examine some measured drive point mobilities (radial velocity response to a radial applied 
force) for the two shells, starting with the pipe in Figure 3.  There are several clear modal peaks in 
the measured mobility (more on these in the next section).  Two other curves are plotted with the 
mobility – estimates for an infinite beam and infinite shell structure with the same cross-sectional and 
material properties.  A measured drive point mobility of the large shell is shown in Figure 4.  More 
modes appear in this mobility than in the beam’s (since the structure is larger).  Here, the two infinite 
structure curves are of a shell and a flat plate (the infinite beam mobility is not included).  Not only 
do the infinite structure mobilities approximate the means of the measured mobilities for both 
structures over different frequency ranges3; they also provide useful insights into how shell structures 
behave over those ranges. 
 
 

 
3 For more on the Amazing Uses of Infinite Structure Theory, see [8]. 



 
 

Table 1: Shell structure dimensions for the large diameter steel shell (top) and pipe (bottom). 
  

L (m) a (m) h (mm) 

1.20 0.460 9.5 

1.04 0.044 5.5 

 
 

         
 

Figure 2:  Large diameter steel shell with L/a = 5.33 and h/a = 0.0417 (left) and small diameter steel 
shell with L/a = 23.4 and h/a = 0.123 (right).  Both are instrumented with accelerometers and the 

small diameter shell (or pipe) is instrumented with flush mounted pressure taps to measure internal 
acoustic pressures. 

 



    
 

Figure 3:  Sample drive point mobility of pipe. 
 

 
Figure 4:  Sample drive point mobility of large shell. 

 
The infinite beam, shell, and flat plate mobilities are: 
 
 

Beam:   
 
 

Shell:   
 
 

Plate:   
 
The beam and shell equations introduce a new variable:  .  This is a critical parameter in shell theory, 
and is the ratio of frequency to ring frequency, which is the frequency at which the in-plane 
wavelength matches the shell circumference: 

2
p

ring

c
f

a


 
Frequency is normalized as 
 

ring ring

f

f




  
 

 

10 2 10 3 
-140 

-120 

-100 

-80 

-60 

-40 

f (Hz) 

|v
i/F

i| 
(d

B
 r

e
 1

 m
/s

/N
)  

Measured 
Inf. Beam 
Inf. Shell 

-40 



Note the approximate frequency ranges of validity for the infinite structure equations.  Using typical 
material properties of steel and the dimensions in Table 1 we compute a ring frequency for the pipe 
of 18.8 kHz.  The mean mobility for the pipe therefore transitions from that of a beam to a shell at 
about 0.77 (h/a) fring, or 1780 Hz.  The ring frequency of the large shell, 3.65 kHz, is much lower 
(since the radius is much larger).  The mean mobility for the large shell therefore transitions from that 
of an infinite curved shell to that of a flat plate at 0.6 fring, or 2190 Hz.  To understand the physical 
reasons for these frequency ranges of behavior and the transition frequencies, we need to examine 
the shell modes of vibration. 
 
4.    MODES OF VIBRATION 

Modes of a structure are just the eigensolutions of the equations of motion.  Analytic expressions are 
available for resonance frequencies and mode shapes of simple beams and flat plates with idealized 
boundary conditions.  However, the cylindrical shell equations of motion are not readily adapted to 
simple mode shape and frequency equations.  Fortunately, Cremer, Heckl, and Ungar [9] derived a 
reasonable approximation of modal frequencies for radial motion of cylindrical shells: 
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Note once again the normalization by the ring frequency.  This formula is general and may be used 
for any combination of boundary conditions on the shell ends.  The boundary conditions determine 
the modal wavenumber km for axial harmonics m.  ks is the amplitude of the two-dimensional 
wavevector (shown in Figure 1 on the shell): 

2 2
s m nk k k 

 
where kn is the wavenumber in the circumferential direction, and is always equal to n/a, where n is 
the circumferential harmonic. 
 
Figure 5 shows the low order modes of a simply supported cylindrical shell for the first three axial 
and circumferential harmonics.  The shapes are: 
 

𝜑௠௡ = 𝐴௠௡ cos(𝑘௠𝑧) cos(𝑛𝜙) and 𝐴௠௡ cos(𝑘௠𝑧) sin(𝑛𝜙) 
 
where km is m/2L for simple end supports.  Look at the n=0 mode shapes first.  The entire 
circumference moves in phase – these are known as the ‘breathing’ or ‘ring’ modes, and generally 
resonate at frequencies very close to the ring frequency.  Now consider the n=1 mode shapes.  Here, 
the entire circumference vibrates as a rigid body.  The motion resembles that of a simple beam with 
a circular cross section.  This is why pipe mobilities resemble simple beam mobilities at low 
frequencies!  Finally, examine the n=2, or ‘lobar’ mode shapes. The cross section ‘ovals’ as it 
oscillates.  These are the lowest order shell modes.  As n increases there are more waves around the 
circumference.  The mode shapes in Figure 5 only show the cos(n) modes.  For non-breathing modes 
(n > 0) there are two instances of each mode (cos and sin).   
 
Now let’s exercise Cremer, Heckl, and Ungar’s approximate resonance frequency formula, starting 
with a high L/a and small h/a shell.  Figure 6 shows approximate resonance frequencies, normalized 
by the ring frequency of course, for the first four axial harmonics m and 14 circumferential harmonics 
n.  First, notice that resonance frequencies increase with increasing m – this is consistent with 
resonances of flat plates and beams.  However, now consider how the resonance frequencies vary 
with increasing n.  The resonance frequencies at lower harmonics are quite high, and at n = 0 cluster 
around the ring frequency.  This is the stiffening effect of the in-plane membrane waves.  At much 
higher circumferential harmonics, though, the resonance frequencies increase with increasing n, 
consistent with flat plates.   



 
 

Figure 5:  Low order radial modes of vibration of a cylindrical shell. 
 
Now, consider cutting and unrolling the shell into a flat rectangular plate and adding simple supports 
along the cut edge.  Resonance frequencies for a simply supported plate are: 
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The plot on the bottom of Figure 6 adds the m=1 and m=4 resonance frequencies for the unrolled flat 
plate.  Notice how they are nearly identical to the frequencies of the shell at very high circumferential 
harmonics.  This shows that the membrane effects diminish with increasing n.  As more waves wrap 
around the circumference they become flatter, and eventually behave as they do in infinite flat plates.  
This is why the high frequency mobility of a shell resembles that of a flat plate, as we see in Figure 
4.  This phenomenon applies to any curved structure – very high frequency waves (with very short 
wavelengths with respect to curvature) are essentially the same as those in flat infinite plates. 
 
Figure 7 shows resonance frequencies for a long thick shell – a pipe, with L/a = 60 and h/a = 0.1.  
The lowest frequency modes are all n=1, or beam-like bending modes.  The next group of frequencies 
correspond to the n=2 ovaling modes – these are almost always the lowest frequency shell modes in 
a pipe.  Now we can better understand the pipe mobility in Figure 3 – it is dominated by n=1/beam 
effects at low frequencies, and transitions to shell behavior when the n=2 modes cut on. 
 
So, when working with a new cylindrical shell, you should always: 
 

- first compute the ring frequency; 
- compute the different transition frequencies for infinite structure behavior – these will partition 

the frequency ranges of beam-like behavior (low frequency), shell behavior (mid frequency) 
and flat plate behavior (high frequency); and 

- estimate mean mobilities using the infinite structure formulae. 
 
This will give you simple and fast estimates of the mobility of any cylindrical shell.  

 



 

 
 

Figure 6:  Non-dimensional resonance frequencies of a 2 m diameter, 1 m long (L/a = 0.5), 10 mm 
thick (h/a = .01) steel cylinder with simply supported ends.  Top – shell only, Bottom – shell 

compared to equivalent flat simply supported plate. 
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Figure 7:  Non-dimensional resonance frequencies of a simply supported pipe L/a=60 and h/a=0.1. 
 
5.    SUMMARY AND CONCLUSIONS 

The goal of this tutorial was to uncomplicate the vibrational behavior of cylindrical shells.  You have 
seen simple examples of mobilities and modes of vibration, along with equations to approximate 
cylindrical shell vibrations.  Once again, the first key quantity to compute when confronted with any 
cylindrical shell problem is the ring frequency.  All behavior is grounded on that quantity.  Small 
diameter thick-walled long shells are essentially beams at low frequencies.  You can estimate the 
frequency when shell effects become important using the transition frequency shown in Section 3.    
Large diameter thin-walled shells behave like flat plates at high frequencies, when wavelengths 
become small with respect to the shell curvature.  Once again, use the transition frequency in this 
paper to estimate when this occurs. 
 
If you find the equations of shell motion horrifying, then the equations that define sound radiated 
within or outside shells are even more so.  Part 2 of this tutorial will provide a simpler, gentler 
approach to estimate and understand cylindrical shell sound-structure interaction. 
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