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ABSTRACT 

In part 1 of this tutorial (proceedings of Inter-noise 2022) I explained vibrations in cylindrical shell 

structures.  In that paper I limited the mathematics and focused on the key behavior of shells based 

on critical parameters like the ring frequency, helical wavenumbers, and mean mobilities over 

different frequency ranges.  I compared measured data to the simple theories.  In part 2, I focus on 

the acoustics of cylindrical shells, including sound within shells and the sound radiated outside them.  

Exterior sound radiation depends strongly on the circumferential order of the shell modes.  Breathing 

modes near the ring frequency radiate sound extremely well, but have very high impedances, so can 

be difficult to excite.  Beam-like modes, where the entire shell cross-section vibrates transversely, 

radiate less efficiently, but can be easily driven.  Higher order, or ‘lobar’ modes radiate even less 

efficiently, but nevertheless are commonly observed in radiated sound spectra due to their low 

impedances.  I also review statistical estimates of radiation efficiency of groups of shell modes, which 

show clear peaks at both the ring frequency as well as at the critical frequency of bending waves.  

The mathematics of sound inside cylindrical shells is some of the most challenging in vibro-acoustics.  

At low frequencies, however, the interior sound is dominated by simple one-dimensional planar 

acoustic waves.  At higher frequencies, the sound depends on how well a shell vibration field matches 

the interior acoustic field based on proximity of resonance frequencies and the similarity of mode 

shape orders, as well as the ‘cut on’ frequencies of higher order internal acoustic modes.  Finally, I 

review the well-known phenomenon of how a low shell wall impedance can reduce the effective 

acoustic sound speed of one-dimensional waves inside cylindrical shells. 

 

1. INTRODUCTION 

In part 1 of this tutorial [1] I reviewed cylindrical shell vibration theory.  Perhaps the most important 

shell parameter is the ring frequency, at which the in-plane structural wavelength matches the shell 

circumference: 

 

𝑓𝑟 =
𝑐𝑝

2𝜋𝑎
 

 

where 

𝑐𝑝 = √
𝐸

(1 − 𝜐2)𝜌𝑠
 

 

and E is Young’s Modulus,  is Poisson’s ratio, and 𝜌𝑠 is structural mass density.   
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Frequency is commonly normalized by the ring frequency as: 

 

Ω =
𝑓

𝑓𝑟𝑖𝑛𝑔
=

𝜔

𝜔𝑟𝑖𝑛𝑔
. 

 

I also showed in part 1 that the normalized frequency  is useful for subdividing frequency ranges 

where shells behave as simple beams (low frequencies), curved shells, and infinite flat panels (high 

frequencies).  I encourage you to read Part 1 before this paper. 

 

In Part 2 I will explain, once again with minimal mathematics, how acoustic regions outside and 

inside cylindrical shells couple to shell vibrations.  You will learn about which types of shell modes 

radiate sound the most efficiently, how at low frequencies the sound inside shells is due to simple 

one-dimensional acoustic waves, and finally how flexible shell walls can reduce the effective acoustic 

sound speeds. 

  

2. EXTERIOR SOUND RADIATION 

Along with the ring frequency, the other important parameter related to exterior sound radiation is 

critical frequency2, which is defined for shells the same way it is for flat panels:  as the frequency 

where acoustic and structural flexural waves have the same speeds: 

 

𝑓𝑐 =
𝑐0
2

2𝜋
√
𝜌𝑠ℎ

𝐷
 

 

where 𝑐0 is the acoustic sound speed, h is the shell thickness, and the flexural rigidity is 

 

𝐷 =
𝐸ℎ3

12(1 − 𝜐2)
. 

 

Exterior radiated sound is strongest at and around the ring and coincidence frequencies and has a 

constant unit radiation efficiency above fc.  Let’s examine first how individual modes radiate sound, 

and later a statistical average of radiation efficiency over groups of modes. 

 

2.1. Mode Order Dependence 

 

Each individual mode radiates sound differently depending on how well it couples with a surrounding 

acoustic region.  For shells, we denote mode orders by their circumferential harmonics n, and axial 

harmonics m (see Figure 5 of Part 1 for some example mode shapes).  The circumferential harmonic 

n is the most important for sound radiation effectiveness.  Figure 1 shows simplified low-frequency 

radiation efficiency trends for the lowest three circumferential harmonics (at high frequencies, above 

coincidence, all modes radiate equally well). 

 

Breathing modes, where n = 0, radiate like monopoles since the entire shell circumference vibrates 

in phase against the acoustic region.  Breathing mode frequencies tend to cluster around the ring 

frequency (see Figure 6 in part 1).  The entire cross section vibrates transversely at n = 1 modes, 

which are beam-like.  These radiate sound like dipoles, which are less efficient than breathing modes.  

The lowest order lobar modes are n = 2, where the cross-section ovalizes.  These resemble quadrupole 

radiators, which are even less efficient.  Higher lobar mode harmonics (n =3, 4, 5, …) radiate even 

less efficiently below coincidence. 

 
2 Sometimes called the coincidence frequency. 



Although breathing modes radiate more efficiently than beam modes, which radiate more efficiently 

than lobar modes, the actual radiated sound power from these mode types also depends on how well 

they may be driven by a structural load.  This depends on the structural mobilities (transverse 

vibration velocity due to a specific applied force).  Breathing mode mobilities are generally quite low 

due to their very high stiffness (this also leads to very high resonance frequencies).  Beam mode 

mobilities are much higher, as they depend on the length-wise stiffness of a shell.  Lobar mode 

mobilities are even higher.  Therefore, although lobar modes may not radiate sound efficiently, they 

still radiate audible sound levels since they are easy to drive.  We’ll examine an example of this next. 

 

 
Figure 1: Approximate low-frequency (ka) sound radiation frequency dependencies of breathing 

modes (n = 0), beamlike bending modes (n = 1), and lobar modes (n = 2 and higher). 

 

 

Examples of several measured sound power transfer functions (Power/Force2) for an elbowed pipe 

submerged in water (defined in Figure 2 of Part 1) are compared in Figure 2 to the sound power 

radiated by a point dipole source3: 

 
𝑃𝑟𝑎𝑑
𝐹2

= (
1

12𝜋
) (

1

𝜌0𝑐0
) 𝑘0

2 

 

We consider sound radiation greater than that from a point dipole to be amplified by the pipe.  In a 

pipe with a small radius, the ring frequency (and therefore the breathing mode frequencies) is very 

high, and above the range of the frequencies measured.  The lowest frequency peaks are due to pipe 

bending (n = 1), followed by n = 2 modes and then n = 3 modes.  This progression of modal harmonics 

over frequency is typical of small radius shells, or pipes.  Note the strong radiation by the n = 2 modes 

is due mainly to the high mobility of those modes.  The n = 3 modes are also audible, although less 

strong than the n = 2 modes due to their lower radiation efficiency. 

 

 
3 These sound powers were measured in a reverberant tank of water and are therefore limited to one-third octave frequency 

bands. 
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Figure 2: Measured sound power transfer functions from a transversely driven elbowed pipe 

submerged in water [2] compared to sound radiated from a point dipole source. 

 

 

Figure 3 shows the the analytically calculated sound pressure radiated from Junger and Feit’s [3] 

submerged cylindrical shell example.  Here, the radius is much larger, and the ring frequency is within 

the frequency range of the calculations (at a ka slightly higher than 1).  Many other mode orders are 

also present, as denoted at the peaks in the radiated pressure shown in the bottom plot.  Junger and 

Feit normalize frequency to non-dimensional wavenumber ka, where k is the acoustic wavenumber 

 / c0 and a is the shell radius.  A ka of  indicates a half acoustic wavelength spans the dimension 

a.  The pressure is calculated in the acoustic far-field, normal to the shell surface, in line with the 

applied input force, and is also normalized, this time by two physical dimensions (a and radial 

distance R) and the input force F.   

 

Calculations are shown in the plot for two length to radius aspect ratios:  L / a = 1 and L / a = 2.  The 

calculations are compared to the sound pressure radiated by another point dipole (denoted infinite 

plate in the plot).  Once again, sound greater than that from a point dipole is considered to be amplified 

by the shell.  At low frequencies (ka < ), the shell vibrations are dominated by stiff in-plane 

membrane behavior and the radiation is strong.  As frequency increases, the shell vibrations become 

more like those in an infinite flat panel and dominated by transverse flexure, and the sound radiates 

like that of an infinite panel. The bottom plot in Figure 3 denotes the peaks with their corresponding 

mode orders.  As expected at low frequencies, the strongest radiating modes are of low order 

(breathing, beam-like, ovalling). 

 

 

3" Steel Schedule 10 elbowed pipes in water, L/D~12

Structural Radial Drives, Out of plane

-100

-90

-80

-70

-60

-50

-40

100 1000 10000

Frequency (Hz)

P
o

w
e

r/
F

2
 (

d
B

 R
e

: 
1

 W
/N

2
)

Out of plane drive, short end, x/D~1

Out of plane drive, elbow center, x/D~3

Out of plane drive, pipe center, x/D~7

Out of plane drive, long end, x/D~11

Point Dipole

n=2 mode

cuton

Low order n=1

(beam) modes

n=3 mode

cuton



 

 
 

Figure 3: Simulated far-field radiated sound pressures (normalized by shell radius, far-field location 

r, and input force) normal to the shell surface induced by a point drive at the shell center.  

Frequency is normalized to ka.  After Junger and Feit [3].  Top:  sound pressure transfer functions 

for shells with two L/a ratios.  Bottom:  annotation of the L/a = 1 sound pressure to denote 

dominant radiating modes (m, n). 

 

 



Figure 4 shows the near-field acoustic intensity measured over a cylindrical surface surrounding 

another submerged cylindrical shell [4] attached to solid hemispherical end caps.  Acoustic intensity 

is sound power over a small area and denotes the outwardly propagating sound, measured at a given 

frequency as: 

 

𝐼 =
1

2
𝑅𝑒(𝑝𝑣∗) 

 

where p is pressure and v is particle velocity.  The pressure and particle velocity is measured 

simultaneously with an underwater acoustic intensity probe [5] in the near-field of the shell.4 

 

The intensity distribution is mapped over circumferential angle (the x-axis) and height (the y-axis).  

The shell geometry is shown between the two intensity plots, along with the location of an internal 

shaker used to generate a point force.  The raw intensity (left plot) shows a dominant modal pattern 

of n = 2 around the circumference and m = 3 along the length.  Transforming the acoustic pressure 

and particle velocity into wavenumber space in both the axial and circumferential directions, and then 

limiting the acoustic intensity calculation to supersonic wavenumbers (k < k0) and finally, inverse-

transforming back to spatial coordinates yields the supersonic acoustic intensity shown in the plot on 

the right side of the figure.  This approach filters out high-order subsonic modes (where the modal 

wavenumber is larger than the acoustic wavenumber).  Now, the dominant radiating mode is clearly 

revealed as n = 0, m = 1.  Once again, it is the low-order modes that radiate the most sound at low 

frequencies. 

 

 

 
 

Figure 4: Near-field acoustic intensity near the (m = 3, n = 2) resonance frequency measured around 

a cylindrical shell attached to solid hemispherical end caps.  The shell spans depths between -2.75 

and -1.4 meters.  The shell was air-filled and driven transversely with a shaker mounted to a point at 

a depth of -2.5 m.  Left:  raw acoustic intensity; Right:  filtered supersonic (k < k0) intensity. 

 
4 This technique is commonly used for Nearfield Acoustic Holography (NAH) applications. 



2.2. Statistical Radiation Efficiency 

 

Many shell structures are quite large and have a high modal density.  In these cases it’s common to 

estimate sound power radiation 𝑃𝑟𝑎𝑑  from an averaged surface vibration 〈𝑣2〉  and the modally-

averaged radiation efficiency 𝜎𝑟𝑎𝑑 .  You can learn more about radiation efficiency in my other 

tutorials [6, 7], but I’ll repeat the definition here: 

 

𝜎𝑟𝑎𝑑 =
𝑃𝑟𝑎𝑑

𝜌0𝑐0𝐴〈𝑣2〉
 

 

where A is the surface area.  Szechenyi [8] and the European Space Agency [9] provide empirical 

formulae for the radiation efficiency given a shell’s radius, length, wall thickness, and material 

properties.  Both are based on ratios of frequency over ring frequency, and frequency over critical 

frequency.   Examples of statistically-averaged radiation efficiencies for an 18” diameter 4’ long 

Schedule 40 steel cylindrical shell are compared for both formulae in Figure 5.  This example shows 

how radiation efficiency curves can have two peaks when the ring frequency is lower than the 

coincidence frequency.  As always, however, radiation efficiency above coincidence converges to 

unity.   

 

 

Figure 5: Statistical estimates of averaged radiation efficiency for an 18” diameter Schedule 40 (h ~ 

3/8”), 4’ long steel cylindrical shell in water using Szechenyi’s and the British Aerospace 

formulations.  Efficiency peaks are evident near the ring and coincidence frequencies.   

 

  



3. INTERIOR SOUND RADIATION 

3.1. Low-Frequency Acoustic Plane Wave Behavior 

Sound radiated from shells into interior acoustic spaces is extremely complicated, except for the low-

frequency case where the acoustic wavelengths are much longer than the shell diameter.  In these 

conditions, the only direction of sound propagation is along the axis of the shell, or the longitudinal 

direction.  The sound waves are often referred to as plane waves, since the radial and circumferential 

pressure variation is constant over the cross-section.   

 

Figure 6 shows sound pressure measured near the outlet of the elbowed pipe from Figure 2, but this 

time in air [10].  A small loudspeaker near the pipe inlet excited the acoustic plane wave modes inside 

the interior air column.  The bottom of the figure shows images of the measured pressure distributions 

within the interior air at the m = 2, 3, and 4 axial plane wave modes.  Only six pressure tap locations 

were available, so the modes are a bit coarse.  However, the spatial distributions are clearly visible5.   

 

 

 
Figure 6: Measured acoustic pressure spectrum within an air-filled elbowed pipe along with spatial 

distributions of some low-order plane-wave acoustic modes.  The pressure spectrum is dominated 

by plane-wave behavior until a frequency of about 1 kHz, when two- and three-dimensional 

acoustic modes appear. 

  

 
5 The radial direction is used in the acoustic mode shape plots to show relative phase.  However, the actual direction of 

pressure fluctuations is axial. 



3.2.  Higher Frequency Acoustics 

 

At higher frequencies, the acoustic wavelength shortens until a half wave can be sustained across the 

pipe diameter.  For two-dimensional acoustic waves, like those in channels with flat walls, this 

frequency is easily calculated as: 

𝑓𝑐 =
𝑐0
2ℎ

 

 

where h is the channel height.  For circular cross-sections, the math is more complicated and involves 

Bessel functions (which I won’t show here).  The cut-on frequency is a little lower: 

 

𝑓𝑐 = 0.58
𝑐0
2𝑎

 

 

For the pipe example in Figure 6 (the air-filled case) the cut-on frequency for non-plane wave acoustic 

modes is about 2 kHz.  The pressure frequency response in the plot clearly shifts at that frequency 

from a simple summation of well-spaced one-dimensional plane wave modes to a higher modal 

density without strongly defined peaks. 

 

The sound-structure interaction equations for three-dimensional interior acoustics are horrifying.  I 

won’t show them here as this is intended to be a simple tutorial.  The equations separate the acoustic 

behavior into longitudinal, radial, and circumferential harmonics.  Although the math is difficult, the 

fundamental coupling between structural modes of vibration and interior acoustic modes is actually 

quite simple.  For strong coupling to occur, two conditions must be met:   

 

- the structural and interior acoustic resonance frequencies coincide (or nearly coincide) 

- the structural and interior acoustic mode orders/shapes align (axial and circumferential 

harmonics) 

 

4. Strong Vibroacoustic Coupling 

When the structural and acoustic impedances are comparable, the overall vibro-acoustic response is 

strongly coupled.  Any vibro-acoustic analysis requires a coupled procedure, where the structural 

normal vibrations into the interior acoustic region are coupled to the normal acoustic pressure 

gradients within the interior acoustic region. 

 

These equations of motion and coupling procedures require even more detailed mathematics, which 

is well outside the focus of this tutorial.  However, I will explain an important and simple 

phenomenon:  the slowing of low-frequency plane acoustic waves within a flexible walled cylindrical 

shell.  Acoustic plane waves pulsate against the shell walls in-phase around the circumference.  This 

in-phase pressure couples directly with the shell wall hoop strains.  After writing equations for the 

interior pressure and hoop strain and equating the particle velocity and structural normal velocity 

along the wall surface, an expression for the plane-wave acoustic wave speed within a flexible shell 

can be derived as: 
𝑐𝑝𝑙𝑎𝑛𝑒

𝑐0
=

1

√1 + (
2𝑎
ℎ
) (

𝜌0𝑐0
2

𝜌𝑠𝑐𝑝2
)

 

 

Note the ratio of the acoustic and structural bulk moduli (c2) in the denominator term, as well as the 

ratio of shell radius a to wall thickness h.  The higher the structural bulk modulus and wall thickness, 

the closer the plane wave speed is to the free-space sound speed c0.  Table 1 compares the sound 

speed ratios for steel and rubber pipe walls.  The differences are pronounced, particularly for water. 



Table 1: Ratios of plane wave and free-field acoustic sound speeds for various acoustic media and 

4” diameter pipes 

 

Acoustic 

Medium 
Pipe Material 

Wall 

Thickness  

(in) 

cplane/c0 

Air Steel ¼   1.00 

Water Steel ¼ 0.93 

Water Rubber ½ 0.01 

 

 

5. SUMMARY AND CONCLUSIONS 

The mathematics which describe the sound-structure interaction between cylindrical shell structures 

and exterior and interior acoustic spaces is some of the most challenging in the vibro-acoustic field.  

Here, I have tried to limit the mathematics and instead highlight the key behaviors and parameters 

which define exterior and interior sound radiation, as well as a strong (but limited) form of vibro-

acoustic coupling.  I have shown measured and analytic examples to explain those behaviors, 

including: 

 

- how shell modes with low circumferential order n radiate sound, particularly the breathing    

(n = 0), beam (n = 1), and ovalling (n = 2) modes; 

- statistically averaged radiation efficiency curves, which can show two peaks when the ring 

frequency is lower than the critical frequency; 

- interior acoustic fields at low frequencies where the sound is limited to longitudinal plane-

wave behavior; and 

- how flexible shell walls can reduce the effective sound speed of acoustic plane waves. 
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