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ABSTRACT

In part 1 of this tutorial (proceedings of Inter-noise 2022) | explained vibrations in cylindrical shell
structures. In that paper | limited the mathematics and focused on the key behavior of shells based
on critical parameters like the ring frequency, helical wavenumbers, and mean mobilities over
different frequency ranges. | compared measured data to the simple theories. In part 2, | focus on
the acoustics of cylindrical shells, including sound within shells and the sound radiated outside them.
Exterior sound radiation depends strongly on the circumferential order of the shell modes. Breathing
modes near the ring frequency radiate sound extremely well, but have very high impedances, so can
be difficult to excite. Beam-like modes, where the entire shell cross-section vibrates transversely,
radiate less efficiently, but can be easily driven. Higher order, or ‘lobar’ modes radiate even less
efficiently, but nevertheless are commonly observed in radiated sound spectra due to their low
impedances. | also review statistical estimates of radiation efficiency of groups of shell modes, which
show clear peaks at both the ring frequency as well as at the critical frequency of bending waves.
The mathematics of sound inside cylindrical shells is some of the most challenging in vibro-acoustics.
At low frequencies, however, the interior sound is dominated by simple one-dimensional planar
acoustic waves. At higher frequencies, the sound depends on how well a shell vibration field matches
the interior acoustic field based on proximity of resonance frequencies and the similarity of mode
shape orders, as well as the ‘cut on’ frequencies of higher order internal acoustic modes. Finally, |
review the well-known phenomenon of how a low shell wall impedance can reduce the effective
acoustic sound speed of one-dimensional waves inside cylindrical shells.

1. INTRODUCTION

In part 1 of this tutorial [1] I reviewed cylindrical shell vibration theory. Perhaps the most important
shell parameter is the ring frequency, at which the in-plane structural wavelength matches the shell
circumference:
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and E is Young’s Modulus, vis Poisson’s ratio, and p; is structural mass density.

f =

where

1 hambricacoustics@gmail.com, www.hambricaocustics.com



mailto:hambricacoustics@gmail.com
http://www.hambricaocustics.com/

Frequency is commonly normalized by the ring frequency as:
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| also showed in part 1 that the normalized frequency 2 is useful for subdividing frequency ranges
where shells behave as simple beams (low frequencies), curved shells, and infinite flat panels (high
frequencies). | encourage you to read Part 1 before this paper.

In Part 2 I will explain, once again with minimal mathematics, how acoustic regions outside and
inside cylindrical shells couple to shell vibrations. You will learn about which types of shell modes
radiate sound the most efficiently, how at low frequencies the sound inside shells is due to simple
one-dimensional acoustic waves, and finally how flexible shell walls can reduce the effective acoustic
sound speeds.

2. EXTERIOR SOUND RADIATION

Along with the ring frequency, the other important parameter related to exterior sound radiation is
critical frequency?, which is defined for shells the same way it is for flat panels: as the frequency
where acoustic and structural flexural waves have the same speeds:
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where ¢, is the acoustic sound speed, h is the shell thickness, and the flexural rigidity is
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Exterior radiated sound is strongest at and around the ring and coincidence frequencies and has a
constant unit radiation efficiency above fc. Let’s examine first how individual modes radiate sound,
and later a statistical average of radiation efficiency over groups of modes.

2.1. Mode Order Dependence

Each individual mode radiates sound differently depending on how well it couples with a surrounding
acoustic region. For shells, we denote mode orders by their circumferential harmonics n, and axial
harmonics m (see Figure 5 of Part 1 for some example mode shapes). The circumferential harmonic
n is the most important for sound radiation effectiveness. Figure 1 shows simplified low-frequency
radiation efficiency trends for the lowest three circumferential harmonics (at high frequencies, above
coincidence, all modes radiate equally well).

Breathing modes, where n = 0, radiate like monopoles since the entire shell circumference vibrates
in phase against the acoustic region. Breathing mode frequencies tend to cluster around the ring
frequency (see Figure 6 in part 1). The entire cross section vibrates transversely at n = 1 modes,
which are beam-like. These radiate sound like dipoles, which are less efficient than breathing modes.
The lowest order lobar modes are n = 2, where the cross-section ovalizes. These resemble quadrupole
radiators, which are even less efficient. Higher lobar mode harmonics (n =3, 4, 5, ...) radiate even
less efficiently below coincidence.

2 Sometimes called the coincidence frequency.



Although breathing modes radiate more efficiently than beam modes, which radiate more efficiently
than lobar modes, the actual radiated sound power from these mode types also depends on how well
they may be driven by a structural load. This depends on the structural mobilities (transverse
vibration velocity due to a specific applied force). Breathing mode mobilities are generally quite low
due to their very high stiffness (this also leads to very high resonance frequencies). Beam mode
mobilities are much higher, as they depend on the length-wise stiffness of a shell. Lobar mode
mobilities are even higher. Therefore, although lobar modes may not radiate sound efficiently, they
still radiate audible sound levels since they are easy to drive. We’ll examine an example of this next.
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Figure 1: Approximate low-frequency (ka) sound radiation frequency dependencies of breathing
modes (n = 0), beamlike bending modes (n = 1), and lobar modes (n = 2 and higher).

Examples of several measured sound power transfer functions (Power/Force?) for an elbowed pipe
submerged in water (defined in Figure 2 of Part 1) are compared in Figure 2 to the sound power
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We consider sound radiation greater than that from a point dipole to be amplified by the pipe. In a
pipe with a small radius, the ring frequency (and therefore the breathing mode frequencies) is very
high, and above the range of the frequencies measured. The lowest frequency peaks are due to pipe
bending (n = 1), followed by n =2 modes and then n =3 modes. This progression of modal harmonics
over frequency is typical of small radius shells, or pipes. Note the strong radiation by the n =2 modes
is due mainly to the high mobility of those modes. The n = 3 modes are also audible, although less
strong than the n = 2 modes due to their lower radiation efficiency.

3 These sound powers were measured in a reverberant tank of water and are therefore limited to one-third octave frequency
bands.
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Figure 2: Measured sound power transfer functions from a transversely driven elbowed pipe
submerged in water [2] compared to sound radiated from a point dipole source.

Figure 3 shows the the analytically calculated sound pressure radiated from Junger and Feit’s [3]
submerged cylindrical shell example. Here, the radius is much larger, and the ring frequency is within
the frequency range of the calculations (at a ka slightly higher than 1). Many other mode orders are
also present, as denoted at the peaks in the radiated pressure shown in the bottom plot. Junger and
Feit normalize frequency to non-dimensional wavenumber ka, where k is the acoustic wavenumber
@ | co and a is the shell radius. A ka of r indicates a half acoustic wavelength spans the dimension
a. The pressure is calculated in the acoustic far-field, normal to the shell surface, in line with the
applied input force, and is also normalized, this time by two physical dimensions (a and radial
distance R) and the input force F.

Calculations are shown in the plot for two length to radius aspect ratios: L/a=1andL/a=2. The
calculations are compared to the sound pressure radiated by another point dipole (denoted infinite
plate in the plot). Once again, sound greater than that from a point dipole is considered to be amplified
by the shell. At low frequencies (ka < x), the shell vibrations are dominated by stiff in-plane
membrane behavior and the radiation is strong. As frequency increases, the shell vibrations become
more like those in an infinite flat panel and dominated by transverse flexure, and the sound radiates
like that of an infinite panel. The bottom plot in Figure 3 denotes the peaks with their corresponding
mode orders. As expected at low frequencies, the strongest radiating modes are of low order
(breathing, beam-like, ovalling).
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Figure 3: Simulated far-field radiated sound pressures (normalized by shell radius, far-field location
r, and input force) normal to the shell surface induced by a point drive at the shell center.
Frequency is normalized to ka. After Junger and Feit [3]. Top: sound pressure transfer functions
for shells with two L/a ratios. Bottom: annotation of the L/a = 1 sound pressure to denote
dominant radiating modes (m, n).



Figure 4 shows the near-field acoustic intensity measured over a cylindrical surface surrounding
another submerged cylindrical shell [4] attached to solid hemispherical end caps. Acoustic intensity
is sound power over a small area and denotes the outwardly propagating sound, measured at a given
frequency as:

1
I = ERe(pv*)

where p is pressure and v is particle velocity. The pressure and particle velocity is measured
simultaneously with an underwater acoustic intensity probe [5] in the near-field of the shell.*

The intensity distribution is mapped over circumferential angle (the x-axis) and height (the y-axis).
The shell geometry is shown between the two intensity plots, along with the location of an internal
shaker used to generate a point force. The raw intensity (left plot) shows a dominant modal pattern
of n = 2 around the circumference and m = 3 along the length. Transforming the acoustic pressure
and particle velocity into wavenumber space in both the axial and circumferential directions, and then
limiting the acoustic intensity calculation to supersonic wavenumbers (k < ko) and finally, inverse-
transforming back to spatial coordinates yields the supersonic acoustic intensity shown in the plot on
the right side of the figure. This approach filters out high-order subsonic modes (where the modal
wavenumber is larger than the acoustic wavenumber). Now, the dominant radiating mode is clearly
revealed as n = 0, m = 1. Once again, it is the low-order modes that radiate the most sound at low
frequencies.
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Figure 4: Near-field acoustic intensity near the (m = 3, n = 2) resonance frequency measured around
a cylindrical shell attached to solid hemispherical end caps. The shell spans depths between -2.75
and -1.4 meters. The shell was air-filled and driven transversely with a shaker mounted to a point at
a depth of -2.5 m. Left: raw acoustic intensity; Right: filtered supersonic (k < ko) intensity.

4 This technique is commonly used for Nearfield Acoustic Holography (NAH) applications.



2.2. Statistical Radiation Efficiency

Many shell structures are quite large and have a high modal density. In these cases it’s common to
estimate sound power radiation P,,,; from an averaged surface vibration (v?) and the modally-
averaged radiation efficiency o,.,4. You can learn more about radiation efficiency in my other
tutorials [6, 7], but I’ll repeat the definition here:

. — Prad
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where A is the surface area. Szechenyi [8] and the European Space Agency [9] provide empirical
formulae for the radiation efficiency given a shell’s radius, length, wall thickness, and material
properties. Both are based on ratios of frequency over ring frequency, and frequency over critical
frequency. Examples of statistically-averaged radiation efficiencies for an 18” diameter 4’ long
Schedule 40 steel cylindrical shell are compared for both formulae in Figure 5. This example shows
how radiation efficiency curves can have two peaks when the ring frequency is lower than the
coincidence frequency. As always, however, radiation efficiency above coincidence converges to
unity.
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Figure 5: Statistical estimates of averaged radiation efficiency for an 18” diameter Schedule 40 (h ~
3/8”), 4’ long steel cylindrical shell in water using Szechenyi’s and the British Aerospace
formulations. Efficiency peaks are evident near the ring and coincidence frequencies.



3. INTERIOR SOUND RADIATION

3.1. Low-Frequency Acoustic Plane Wave Behavior

Sound radiated from shells into interior acoustic spaces is extremely complicated, except for the low-
frequency case where the acoustic wavelengths are much longer than the shell diameter. In these
conditions, the only direction of sound propagation is along the axis of the shell, or the longitudinal
direction. The sound waves are often referred to as plane waves, since the radial and circumferential
pressure variation is constant over the cross-section.

Figure 6 shows sound pressure measured near the outlet of the elbowed pipe from Figure 2, but this
time in air [10]. A small loudspeaker near the pipe inlet excited the acoustic plane wave modes inside
the interior air column. The bottom of the figure shows images of the measured pressure distributions
within the interior air at the m = 2, 3, and 4 axial plane wave modes. Only six pressure tap locations
were available, so the modes are a bit coarse. However, the spatial distributions are clearly visible®.
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Figure 6: Measured acoustic pressure spectrum within an air-filled elbowed pipe along with spatial
distributions of some low-order plane-wave acoustic modes. The pressure spectrum is dominated
by plane-wave behavior until a frequency of about 1 kHz, when two- and three-dimensional
acoustic modes appear.

5 The radial direction is used in the acoustic mode shape plots to show relative phase. However, the actual direction of
pressure fluctuations is axial.



3.2. Higher Frequency Acoustics

At higher frequencies, the acoustic wavelength shortens until a half wave can be sustained across the
pipe diameter. For two-dimensional acoustic waves, like those in channels with flat walls, this

frequency is easily calculated as:
)
fe =2

where h is the channel height. For circular cross-sections, the math is more complicated and involves
Bessel functions (which | won’t show here). The cut-on frequency is a little lower:

Co
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For the pipe example in Figure 6 (the air-filled case) the cut-on frequency for non-plane wave acoustic
modes is about 2 kHz. The pressure frequency response in the plot clearly shifts at that frequency
from a simple summation of well-spaced one-dimensional plane wave modes to a higher modal
density without strongly defined peaks.

The sound-structure interaction equations for three-dimensional interior acoustics are horrifying. |
won’t show them here as this is intended to be a simple tutorial. The equations separate the acoustic
behavior into longitudinal, radial, and circumferential harmonics. Although the math is difficult, the
fundamental coupling between structural modes of vibration and interior acoustic modes is actually
quite simple. For strong coupling to occur, two conditions must be met:

- the structural and interior acoustic resonance frequencies coincide (or nearly coincide)
- the structural and interior acoustic mode orders/shapes align (axial and circumferential
harmonics)

4. Strong Vibroacoustic Coupling

When the structural and acoustic impedances are comparable, the overall vibro-acoustic response is
strongly coupled. Any vibro-acoustic analysis requires a coupled procedure, where the structural
normal vibrations into the interior acoustic region are coupled to the normal acoustic pressure
gradients within the interior acoustic region.

These equations of motion and coupling procedures require even more detailed mathematics, which
is well outside the focus of this tutorial. However, | will explain an important and simple
phenomenon: the slowing of low-frequency plane acoustic waves within a flexible walled cylindrical
shell. Acoustic plane waves pulsate against the shell walls in-phase around the circumference. This
in-phase pressure couples directly with the shell wall hoop strains. After writing equations for the
interior pressure and hoop strain and equating the particle velocity and structural normal velocity
along the wall surface, an expression for the plane-wave acoustic wave speed within a flexible shell
can be derived as:
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Note the ratio of the acoustic and structural bulk moduli (oc?) in the denominator term, as well as the
ratio of shell radius a to wall thickness h. The higher the structural bulk modulus and wall thickness,
the closer the plane wave speed is to the free-space sound speed co. Table 1 compares the sound
speed ratios for steel and rubber pipe walls. The differences are pronounced, particularly for water.




Table 1: Ratios of plane wave and free-field acoustic sound speeds for various acoustic media and
4” diameter pipes

Acoustic Pipe Material Th\i/(\:llirl:ess Cplane/Co
Medium (in) plane
Air Steel Ya 1.00
Water Steel Ya 0.93
Water Rubber Y 0.01

5. SUMMARY AND CONCLUSIONS

The mathematics which describe the sound-structure interaction between cylindrical shell structures
and exterior and interior acoustic spaces is some of the most challenging in the vibro-acoustic field.
Here, | have tried to limit the mathematics and instead highlight the key behaviors and parameters
which define exterior and interior sound radiation, as well as a strong (but limited) form of vibro-
acoustic coupling. | have shown measured and analytic examples to explain those behaviors,
including:

- how shell modes with low circumferential order n radiate sound, particularly the breathing
(n =0), beam (n = 1), and ovalling (n = 2) modes;

- statistically averaged radiation efficiency curves, which can show two peaks when the ring
frequency is lower than the critical frequency;

- interior acoustic fields at low frequencies where the sound is limited to longitudinal plane-
wave behavior; and

- how flexible shell walls can reduce the effective sound speed of acoustic plane waves.
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