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ABSTRACT 

An analytical model of the structure-borne sound within flat plates excited by spatially 
random pressure fields is described.  The model, validated previously using measurements of 
the structural intensity in a rectangular plate driven by a diffuse sound field, is exercised 
using turbulent boundary layer (TBL) wall pressures.  TBL pressure fields are applied to a 
flat plate at various flow speeds, and power input and structural intensity are computed at the 
resonance frequencies of several modes.  At low flow speeds, when the convection speed of 
the TBL wall pressures is slower than or comparable to the plate bending wave speed, the 
structural intensity fields in the plate do not vary significantly with flow speed.  At very high 
flow speeds, the intensity patterns change, and eventually converge to the patterns caused by 
fully correlated, non-spatially varying pressure loads.  Although the structural intensity 
patterns do not change significantly over most flow speeds of practical interest, the total 
power injected into the plate varies substantially with flow speed, peaking near, but not 
necessarily at, the coincidence of the plate bending and flow convective wavespeeds. 

1 INTRODUCTION 

Structural intensity (S-I) fields indicate the magnitude and direction of energy flow through a 
vibrating structure as a function of position.  Various experimental and computational studies 
have been performed for simple plate and beam structures excited deterministically at a point 
or group of points [1-9].  Thus far, insufficient attention has been paid to intensity fields in 
structures excited by distributed, random, fluctuating pressure fields, such as those due to 
turbulent boundary layers or diffuse acoustic excitation.  In randomly excited structures, the 
fluctuating velocity and stress fields are only partially correlated over space.  For example, the 
turbulent eddies within a boundary layer over an aircraft wing or propeller blade (like the one 
shown in Figure 1) are coherent only over small regions.  The turbulence near a wing tip, for 
example, is completely incoherent with the turbulence near the joint with the fuselage.   
 
The aerospace, automotive, nuclear, and naval communities have developed multiple-
input/multiple output techniques for analyzing the vibrations and strains within structures 
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excited by partially coherent excitation fields [10-18].  However, little attention has been 
given to the structural intensity fields in randomly excited structures. 
 
Figure 1 shows notional structural intensity patterns in a propeller blade and hub, caused by 
spatially random pressures acting on one of the blades.  While computational methods like FE 
analysis [3, 4] may be used to compute intensity fields like these given a deterministic point 
drive (or set of point drives), there are no techniques available to simulate intensities induced 
by spatially random pressure fields. 
 
 

 
 

Figure 1: Example of notional structural intensity field on the blade of a propeller excited by a 
convecting turbulent pressure field, along with intensities on the shaft. 

 
Daley and Hambric presented previously an analytic method of simulating structural intensity 
fields in structures excited by distributed random pressure fields [19].  The approach, based 
on combining transfer function matrices between structural forces and displacements with 
cross-spectral density functions of spatially random applied forces, has been validated against 
simulations made using the well known finite differencing approach for flat rectangular plates 
excited by spatially random diffuse acoustic fields, and against measurements [19, 20].   
 
The method is used here to investigate how the structure-borne sound in plates is affected by 
the fluctuating wall pressures induced by turbulent boundary layer (TBL) flow fields, and in 
particular how the TBL flow velocity affects structural intensities.  It is well known that TBL 
wall pressures are dominated by contributions at the convective wavenumber (ω/Uc, where Uc 
is the effective convection velocity of the TBL wall pressures propagating over the surface).  
When the convective wavenumber coincides with wavenumber peaks of structural vibration, 
significant response occurs.  However, when the convective and peak structural wavenumbers 
are misaligned, plate vibration (and structural intensities) are small.  In this study, TBL 
pressure fields are applied to a flat rectangular baffled plate at various flow speeds, and power 
input and structural intensity are computed at the resonance frequencies of low-order modes.  
The behaviour of the power input and intensity fields as a function of flow velocity is 
described and explained. 
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2 SUMMARY OF METHODOLOGY  

Throughout this article the term “intensity” is used to describe the active part of the total 
intensity, or the in-phase portion of the potential and flow variable pairs of the intensity 
components.  In thin plates undergoing flexural vibration, the total active structural intensity 
vectors consist of components due to shear waves, bending waves and twisting waves.  
Following the conventions of references [9] and [20], the orthogonal components of intensity 
may be written as:  
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where Q is shear force/length, M is moment/length, w is transverse displacement, θ is rotation 
about the plate’s neutral axis, h is the plate thickness, and the ‘dots’ indicate time derivatives.  
The superscripts, s, b, and t, on the right sides of the preceding equations denote shear, 
bending and twisting components, respectively.  Figure 2 is a free body diagram of a 
differential element of a plate showing the assumed orientations of the vector quantities 
contained in Equations (1-2).  The total S-I vectors are the vector sums of Equations (1-2):  
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Suppressing the frequency dependence, one may rewrite Equations (1) and (2) in terms of 
cross spectra [19, 21, 22]:  
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As shown in [19], the cross spectra terms in equation (4) may be computed using : 
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The H matrices contain transfer functions between the inputs (pressures) and outputs 
(displacements, rotations, shears, and moments), and may be computed analytically for simple 
flat plates, or using Finite Element (FE) analysis for more complicated structures.  Note that 
no finite differencing assumptions are made in the above formulation. 

 

 
 

Figure 2:  Free body diagram of differential element of plate. 
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3 TEST CASE  

The structural intensity methods are applied to a baffled, thin rectangular plate, simply-
supported on all four sides, excited by a turbulent boundary layer flow, as shown in Figure 3.  
The plate dimensions are 11.2 cm (x direction) by 7.5 cm (y direction) by 0.3175 cm thick.  It 
is composed of Brass 260 (a.k.a. Cartridge Brass), a readily available material.  The material 
properties of Brass 260 are Young's modulus: 1011.0 10E = ×  Pa, Poisson's ratio: v = 0.375 
and density: 8525ρ =  kg/m3.  The material loss factor used in the simulations was estimated 
previously from experiment as η= 0.002.  A point damper with mechanical resistance 

40mR =  N٠s/m and a moving mass 1Rm =  gram is located in the upper right quadrant of the 
plate at (8.80,5.25) cm. 
 
Because the plate is thin and simply-supported, the frequency response matrices (H) used in 
the simulations may be obtained analytically by a summation of the plate's normal modes 
[19].   Responses were computed over a grid of points on the plate, chosen to resolve spatially 
the wavelengths of flexural waves and the turbulent boundary layer wall pressure field 
exciting the surface (a guideline of eight grid points per wavelength was followed).  In this 
case, all points in the grid are excited by the pressure field, and intensities are computed for 
all grid points.  The pressure response matrices are relatively simple to compute, since the 
plate is simply supported on all four sides and, for lower order modes, fits the criterion for 
thin plate calculations (i.e., kbh < 1, where kb is the bending wavenumber of a mode). 
 
The applied pressure model is that of a turbulent boundary layer wall pressure field, where the 
cross-spectra between pressures at two points, i and j may be approximated using the well 
known model of Corcos [23]: 
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where Δx and Δy are the separation distances between points on the plate, αx and αy are the 
decay coefficients of the wall pressure fluctuations in the streamwise (x) and cross-flow (y) 
directions (chosen to be 0.1 and 0.77 for smooth walls), and Uc is the convective velocity, 
usually about 70% of the free stream velocity.  The pressure cross spectrum is normalized by 
the wall pressure autospectrum Φpp , so that this study focuses on the effects of the cross-
spectral behavior of the TBL field on the plate intensities.  The term in ( ) in Equation 6 
represents a spatial decay of the wall pressures, and the term following the ( ) is an oscillating 
wave propagating in the flow direction.  While it is well known that the Corcos model 
overestimates the low-wavenumber components of the wall pressure field [24], it is suitable 
for analyzing trends in plate structural intensities as a function of flow (and convection) 
velocity. 

x

y
z
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Figure 3:  Simply supported rectangular flat plate excited by TBL flow. 
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4 RESULTS 

A set of simulations were performed using Corcos model excitation with flow in the plate's 
lengthwise (x) direction.  The velocity was varied over a range encompassing above and 
below coincidence conditions.  Intensity fields and magnitudes were examined versus flow 
velocity.  This study is divided into two parts: Section 4.1 contains plots of the input power to 
the plate versus flow velocity and Section 4.2 shows the evolution of the intensity field as the 
flow changes from low to high velocity (or high to low convective wavenumber).  Injected 
power at frequencies corresponding to the resonances of the (1,1), (3,1), and (4,1) simply 
supported plate modes are shown.  The modes resonate at 1394, 4675, and 7638 Hz, based on 
thin plate calculations. 

4.1 Injected Power versus Convective Velocity 

The abscissas of the input power plots in this section indicate the ratio of the plate bending 
wavenumber component in the flow direction normalized by the convective wavenumber of 
the flow.  Lower values of this ratio indicate slower flow, while higher values indicate faster 
flow.  Aerodynamic coincidence between the convective pressures and bending wavenumbers 
occurs at kx/kc=1.  We denote conditions where kx/kc<1 as subsonic (high convective 
wavenumber, slow flow) and kx/kc>1 as supersonic (low convective wavenumber, fast flow). 
 
As in Wallace's paper on radiation resistance [25] (related by reciprocity to the input power 
shown here), modes fall into behavioral groupings based on their modal indices:  input power 
to odd-odd indexed modes differs from input power to even-even and even-odd modes.  The 
power input at the (1,1) mode resonance frequency is shown in Figure 4.  The input power 
rises with increasing flow velocity until roughly aerodynamic coincidence (kx/kc=1).  For slow 
flows the excitation wavenumber is much larger than the structural wavenumber, so that 
nearly equal parts of the plate are forced with positive and negative phase at low velocities, 
thus inefficiently exciting the plate.  At high speeds, the input power asymptotically 
approaches the value predicted for a fully correlated pressure field (shown with a red asterisk 
on the right side of the plot).  For very high flow velocities, the excitation wavenumber tends 
toward zero, as is the case for fully correlated (i.e. plane wave) excitation of the plate.   
 
The right side of Figure 4 shows the x component of the wavenumber spectra of the (1,1) 
plate mode and the Corcos model in the flow direction for aerodynamic coincidence.  
Increasing the flow velocity would move the convective ridge (the peak in the excitation 
spectrum) to the left, while decreasing the flow velocity would move it to the right.  The 
convective ridge indicates that most of the energy in the Corcos model is contained in 
wavenumbers corresponding to the flow's convective velocity.  The plate mode's wavenumber 
spectrum is a measure of the wavenumber sensitivity of the mode.  High values indicate that 
the mode accepts energy well at a given wavenumber, while low values indicate that the mode 
is not susceptible to excitation at that wavenumber.  A mode couples most efficiently to a 
turbulent flow when the convective ridge is aligned with the peak in the mode's wavenumber 
spectrum (aerodynamic coincidence, which is the condition shown in the figure).  
 
The power input at the (3,1) resonance frequency is shown in Figure 5.  The input power at 
this frequency, again, increases with increasing flow velocity until coincidence.  At 
supersonic conditions (kx>kc), the input power oscillates with increasing flow velocity until it 
eventually converges to a constant input power corresponding to plane wave (fully correlated) 
excitation.  The reason for the oscillation in input power is easily observed in the wavenumber 
spectra shown in the right side of Figure 5.  The trough in the input power that occurs just 
above coincidence occurs at a wavenumber ratio of 3.23.  At this wavenumber ratio, the 
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convective ridge aligns with the dip to the left of the principle peak of the modal wavenumber 
spectrum.  In other words, for a wavenumber ratio of 3.23 (where a local minimum of input 
power occurs) most of the energy in the excitation model is contained in wavenumbers to 
which the (3,1) plate mode (in the flow direction) is insensitive.  Thus, at this wavenumber 
ratio, power must be input to other, non-resonant modes.  These modes accept less power than 
at frequencies close to their resonance frequencies.  The input power, therefore, shows a dip.   
 
Above a wavenumber ratio of 3.23, the convective ridge is located over the leftmost plateau 
of the resonant mode's wavenumber sensitivity.  This plateau has a lower magnitude than the 
main peak of the (3,1) mode spectrum.  As such, the mode is less coupled to the flow for 
extremely fast flow velocities.  This is reflected in the input power plot, where at high flow 
velocities, the input power approaches a lower value than at coincidence.  A more intuitive 
explanation of this lower value may be made in physical (as opposed to wavenumber) space.  
At high flow velocities, the three velocity antinodes (peak response locations) of the (3,1) 
mode are forced by a pressure field of nearly uniform phase.  As such, the middle third of the 
plate is effectively being forced 180 degree out of phase with the left and right thirds of the 
plate.  At coincidence, however, the convective and structural wavenumbers are equal in the 
flow direction.  Therefore, at coincidence, all three velocity antinodes are being forced in 
phase with each other by the pressure field, resulting in stronger coupling to the flow and 
greater input power.  This phenomenon will be illustrated graphically in the next section. 
 
Figure 6 shows the input power and wavenumber spectra at the (4,1) plate resonance 
frequency.  They are included to show the difference between the coupling of odd-odd and 
even-odd modes to a TBL flow excitation.  The input power at this frequency rises as the flow 
velocity increases toward coincidence and goes through a region of oscillation as kc becomes 
smaller than kx.  After the region of oscillation, the input power decreases steadily with 
increasing flow velocity, eventually reaching a steady value corresponding to the power input 
by a fully correlated wavefront.  The decrease of input power with increasing velocity is 
explained by the (4,1) mode's wavenumber spectrum.  Modes with even indices in the flow 
direction exhibit low wavenumber rolloff, unlike odd ordered modes.  This is because, for 
even order modes, equal portions of the plate are being forced with positive and negative 
phase by a fully correlated wave front.  As such, the contributions of the resonant mode and 
all other even indexed modes vanish for relatively high flow velocities.  This leaves only the 
odd ordered (non-resonant) modes to contribute to the response (and the input power) of the 
plate.  It has been shown for the (1,1) and (3,1) resonances that these modes have a finite, zero 
slope wavenumber sensitivity at low wavenumbers.  Thus, as shown in Figure 6, the input 
power at the resonance frequencies for even ordered modes should approach a constant, albeit 
lower value than for the odd resonance frequencies at high flow velocities.  
 
Several additional observations regarding input power versus flow velocity should be made.  
First, the number of peaks and nulls in the input power curve below its fully correlated limit 
should increase with increasing mode index in the flow direction.  Specifically, the number of 
peaks in the input power curve are equal to the number of peaks in the resonant mode's flow-
direction wavenumber spectrum below the primary wavenumber peak.  Also, it should be 
noted that the input power (particularly for slow flows) will vary depending on the excitation 
model chosen.  Recall that the Corcos TBL model used here tends to predict stronger content 
in the low wavenumber region than various other models [24].  As such, the input power 
predicted for slower flows in this paper is higher than that which would be predicted using 
other TBL models. 
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Figure 4:  Left:  simulated input power vs. structural/flow wavenumber ratio at (1,1) resonance 

frequency; the red asterisk to the right indicates the power input by a fully correlated pressure field.  
Right:  wavenumber spectra of the (1,1) mode and Corcos TBL excitation at a flow speed where the 

convective and peak modal wavenumbers coincide. 
 

  
Figure 5:  Left:  simulated input power vs. structural/flow wavenumber ratio at (3,1) resonance 

frequency; the red asterisk to the right indicates the power input by a fully correlated pressure field.  
Right:  wavenumber spectra of the (3,1) mode and Corcos TBL excitation at a flow speed where the 

convective and peak modal wavenumbers coincide. 
 

  
Figure 6:  Left:  simulated input power vs. structural/flow wavenumber ratio at (4,1) resonance 

frequency; the red asterisk to the right indicates the power input by a fully correlated pressure field.  
Right:  wavenumber spectra of the (4,1) mode and Corcos TBL excitation at a flow speed where the 

convective and peak modal wavenumbers coincide. 
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4.2 Effects of Convective Velocity on SI Fields 

Figure 7 and Figure 8 show intensity simulations at the (3,1) resonance frequency for flow 
speeds of 10 to 50% of the bending wave speed in the plate (subsonic conditions).  The 
figures show (a) an example of the correlation of the TBL pressure field with a reference 
point at the plate center, (b) the structural intensity field, shown as a vector array 
superimposed over a contour of intensity magnitude, (c) the distribution of power input to the 
plate, and (d) the divergence of the intensity field.  The three lobed mode shape pattern of the 
(3,1) mode is clearly visible in Figure 7, and has fewer oscillations over its length than the 
pressure excitation.  The intensity field shows a broad vortex on the left side of the plate, with 
intensity converging to the damper in the upper right quadrant of the plate.  The divergence 
plot clearly shows the location of the damper, and shows that power is injected over most of 
the plate. 
 
Figure 9 shows a simulation at aerodynamic coincidence.  The intensity magnitude scale 
reaches a maximum near this point, as seen in the input power curve in Figure 5.  While the 
intensity amplitudes change, it is interesting to note that the intensity field patterns do not 
change significantly for 0.1 < kx/kc < 1.0. 
 
Figure 10 shows the simulated intensity field for supersonic conditions (kx/kc = 10).  For high 
speed TBL flow excitation, the intensity field differs slightly from the subsonic conditions, 
with a null appearing between the large intensity vortex on the left, and the power travelling 
into the damper on the right. For subsonic flows, the circulation of energy on the left two 
thirds of the plate is coupled to the right third of the plate.  For the fast flow cases the input 
power distribution shows power leaving the plate from its central third (the blue region in the 
input power plot).  In these cases, the divergence plots show a distributed energy sink over 
this third as well (the orange region in the center).  It appears that some of the energy entering 
the plate in the left third of the plate exits the plate in the central third.  The energy entering 
the plate in the right third appears to exit the plate via the damper.  For slower flows (Figures 
7-9), the middle third of the plate is not excited out of phase with the outer thirds.  As such, 
the energy from the left third does not exit the plate in the middle, and instead must be 
dissipated by either material losses or the damper.  A simulation for a fully correlated 
excitation field is included for comparison purposes in Figure 11.  The simulated intensity 
field for the fully correlated excitation is similar in shape and magnitude, as expected, to the 
Corcos excitation when the flow speed greatly exceeds the bending wavespeed in the plate. 

5 SUMMARY AND CONCLUSIONS 

Analytic simulations of the structural intensities and power flows of a TBL excited flat 
rectangular baffled simply supported brass plate are presented.  The simulations use methods 
developed by the authors previously [19,20], and combine transfer functions between pressure 
loads and plate responses (displacement, rotation, moment, and shear) with cross-spectral 
density matrices of forcing functions.  The power injected into the plate at frequencies 
corresponding to the resonances of several low order modes is shown.  Power input peaks 
near convective flow velocities which coincide with the peak wavenumbers of the mode 
shapes, and converges to constant values at very high convective velocities.  Structural 
intensity patterns are nearly constant for a wide range of flow velocities, only changing when 
flow velocities are very high, where the pressure loads over the plate become nearly perfectly 
correlated. 
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Figure 7:  Simulated S-I (upper right), pressure correlation (upper left), distributed input power (lower 
left), and divergence (lower right) at (3,1) resonance frequency, kx/kc=0.1 (subsonic flow). 
 

 
 

Figure 8:  Simulated S-I (upper right), pressure correlation (upper left), distributed input power (lower 
left), and divergence (lower right) at (3,1) resonance frequency, kx/kc=0.5 (subsonic flow). 
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Figure 9:  Simulated S-I (upper right), pressure correlation (upper left), distributed input power (lower 
left), and divergence (lower right) at (3,1) resonance frequency, kx/kc=1.0 (coincidence). 
 

 
 

Figure 10:  Simulated S-I (upper right), pressure correlation (upper left), distributed input power 
(lower left), and divergence (lower right) at (3,1) resonance frequency, kx/kc=10.0 (supersonic flow). 
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Figure 11:  Simulated S-I (upper right), pressure correlation (upper left), distributed input power 
(lower left), and divergence (lower right) at (3,1) resonance frequency, fully correlated loading. 
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