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ABSTRACT

An analytical model of the structure-borne sound within flat plates excited by spatially
random pressure fields is described. The model, validated previously using measurements of
the structural intensity in a rectangular plate driven by a diffuse sound field, is exercised
using turbulent boundary layer (TBL) wall pressures. TBL pressure fields are applied to a
flat plate at various flow speeds, and power input and structural intensity are computed at the
resonance frequencies of several modes. At low flow speeds, when the convection speed of
the TBL wall pressures is slower than or comparable to the plate bending wave speed, the
structural intensity fields in the plate do not vary significantly with flow speed. At very high
flow speeds, the intensity patterns change, and eventually converge to the patterns caused by
fully correlated, non-spatially varying pressure loads. Although the structural intensity
patterns do not change significantly over most flow speeds of practical interest, the total
power injected into the plate varies substantially with flow speed, peaking near, but not
necessarily at, the coincidence of the plate bending and flow convective wavespeeds.

1 INTRODUCTION

Structural intensity (S-I) fields indicate the magnitude and direction of energy flow through a
vibrating structure as a function of position. Various experimental and computational studies
have been performed for simple plate and beam structures excited deterministically at a point
or group of points [1-9]. Thus far, insufficient attention has been paid to intensity fields in
structures excited by distributed, random, fluctuating pressure fields, such as those due to
turbulent boundary layers or diffuse acoustic excitation. In randomly excited structures, the
fluctuating velocity and stressfields are only partially correlated over space. For example, the
turbulent eddies within a boundary layer over an aircraft wing or propeller blade (like the one
shown in Figure 1) are coherent only over small regions. The turbulence near awing tip, for
example, is completely incoherent with the turbulence near the joint with the fuselage.

The aerospace, automotive, nuclear, and naval communities have developed multiple-
input/multiple output techniques for analyzing the vibrations and strains within structures
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excited by partially coherent excitation fields [10-18]. However, little attention has been
given to the structural intensity fieldsin randomly excited structures.

Figure 1 shows notional structural intensity patterns in a propeller blade and hub, caused by
spatialy random pressures acting on one of the blades. While computational methods like FE
analysis [3, 4] may be used to compute intensity fields like these given a deterministic point
drive (or set of point drives), there are no techniques available to simulate intensities induced
by spatially random pressure fields.

Figure 1: Example of notional structural intensity field on the blade of a propeller excited by a
convecting turbulent pressure field, along with intensities on the shaft.

Daley and Hambric presented previously an analytic method of simulating structural intensity
fields in structures excited by distributed random pressure fields [19]. The approach, based
on combining transfer function matrices between structural forces and displacements with
cross-spectral density functions of spatially random applied forces, has been validated against
simulations made using the well known finite differencing approach for flat rectangular plates
excited by spatially random diffuse acoustic fields, and against measurements [19, 20].

The method is used here to investigate how the structure-borne sound in plates is affected by
the fluctuating wall pressures induced by turbulent boundary layer (TBL) flow fields, and in
particular how the TBL flow velocity affects structural intensities. It iswell known that TBL
wall pressures are dominated by contributions at the convective wavenumber (a/U., where U,
is the effective convection velocity of the TBL wall pressures propagating over the surface).
When the convective wavenumber coincides with wavenumber peaks of structural vibration,
significant response occurs. However, when the convective and peak structural wavenumbers
are misaligned, plate vibration (and structural intensities) are small. In this study, TBL
pressure fields are applied to aflat rectangular baffled plate at various flow speeds, and power
input and structural intensity are computed at the resonance frequencies of low-order modes.
The behaviour of the power input and intensity fields as a function of flow velocity is
described and explained.
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2 SUMMARY OF METHODOLOGY

Throughout this article the term “intensity” is used to describe the active part of the total
intensity, or the in-phase portion of the potential and flow variable pairs of the intensity
components. In thin plates undergoing flexural vibration, the total active structural intensity
vectors consist of components due to shear waves, bending waves and twisting waves.
Following the conventions of references [9] and [20], the orthogonal components of intensity

may be written as:
_ <QXW>‘ + <M X0y>t _<M Xyex >t

= . =13+10+18 (1)
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where Q is shear force/length, M is moment/length, w is transverse displacement, #is rotation
about the plate’s neutral axis, his the plate thickness, and the ‘dots’ indicate time derivatives.
The superscripts, s, b, and t, on the right sides of the preceding equations denote shear,
bending and twisting components, respectively. Figure 2 isafree body diagram of a
differential element of a plate showing the assumed orientations of the vector quantities
contained in Equations (1-2). Thetotal S-1 vectors are the vector sums of Equations (1-2):

F=10+1,]. (3)

Suppressing the frequency dependence, one may rewrite Equations (1) and (2) in terms of
cross spectra[19, 21, 22]:

1
I =F9K{quw+Gmxéy -G, }, and (4a)
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Asshown in [19], the cross spectraterms in equation (4) may be computed using :
GqXW=H§qXGppHpW,G =H" G _H  ,and G .=HH G,H ;and (5a)
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The H matrices contain transfer functions between the inputs (pre$ures) and outputs
(displacements, rotations, shears, and moments), and may be computed analytically for simple
flat plates, or using Finite Element (FE) analysis for more complicated structures. Note that
no finite differencing assumptions are made in the above formulation.

Mxy L ’ Mxy

Figure 2: Free body diagram of differential element of plate.
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3 TEST CASE

The structural intensity methods are applied to a baffled, thin rectangular plate, simply-
supported on all four sides, excited by a turbulent boundary layer flow, as shown in Figure 3.
The plate dimensions are 11.2 cm (x direction) by 7.5 cm (y direction) by 0.3175 cm thick. It
is composed of Brass 260 (a.k.a. Cartridge Brass), areadily available material. The material

properties of Brass 260 are Y oung's modulus; E =11.0x10" Pa, Poisson'sratio: v = 0.375
and density: p =8525 kg/m>. The material loss factor used in the simulations was estimated
previously from experiment as 7= 0.002. A point damper with mechanical resistance

R, =40 N-s/mand amoving mass m, =1 gram islocated in the upper right quadrant of the
plate at (8.80,5.25) cm.

Because the plate is thin and simply-supported, the frequency response matrices (H) used in
the simulations may be obtained analytically by a summation of the plate's normal modes
[19]. Responseswere computed over agrid of points on the plate, chosen to resolve spatially
the wavelengths of flexural waves and the turbulent boundary layer wall pressure field
exciting the surface (a guideline of eight grid points per wavelength was followed). Inthis
case, dl pointsin the grid are excited by the pressure field, and intensities are computed for
al grid points. The pressure response matrices are relatively ssmple to compute, since the
plate is smply supported on all four sides and, for lower order modes, fits the criterion for
thin plate calculations (i.e., kyh < 1, where k, is the bending wavenumber of a mode).

The applied pressure model isthat of aturbulent boundary layer wall pressure field, where the
cross-spectra between pressures at two points, i and j may be approximated using the well
known model of Corcos[23]:

Gy, (@.A%,Ay)
(I) pp ( a))

where Ax and Ay are the separation distances between points on the plate, o5 and ¢ are the
decay coefficients of the wall pressure fluctuations in the streamwise (x) and cross-flow (y)
directions (chosen to be 0.1 and 0.77 for smooth walls), and U, is the convective velocity,
usually about 70% of the free stream velocity. The pressure cross spectrum is normalized by
the wall pressure autospectrum @, , so that this study focuses on the effects of the cross-
spectral behavior of the TBL field on the plate intensities. Thetermin () in Equation 6
represents a spatial decay of the wall pressures, and the term following the () is an oscillating
wave propagating in the flow direction. While itiswell known that the Corcos model
overestimates the low-wavenumber components of the wall pressure field [24], it is suitable
for analyzing trends in plate structural intensities as a function of flow (and convection)

velocity.
: 5
e
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Figure 3: Simply supported rectangular flat plate excited by TBL flow.
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4 RESULTS

A set of simulations were performed using Corcos model excitation with flow in the plate's
lengthwise (x) direction. The velocity was varied over a range encompassing above and
below coincidence conditions. Intensity fields and magnitudes were examined versus flow
velocity. This study is divided into two parts: Section 4.1 contains plots of the input power to
the plate versus flow velocity and Section 4.2 shows the evolution of the intensity field as the
flow changes from low to high velocity (or high to low convective wavenumber). Injected
power at frequencies corresponding to the resonances of the (1,1), (3,1), and (4,1) smply
supported plate modes are shown. The modes resonate at 1394, 4675, and 7638 Hz, based on
thin plate calculations.

4.1  Injected Power versus Convective Velocity

The abscissas of the input power plots in this section indicate the ratio of the plate bending
wavenumber component in the flow direction normalized by the convective wavenumber of
the flow. Lower values of this ratio indicate slower flow, while higher values indicate faster
flow. Aerodynamic coincidence between the convective pressures and bending wavenumbers
occurs a kdk=1. We denote conditions where k,/k.<1l as subsonic (high convective
wavenumber, slow flow) and k./k:>1 as supersonic (low convective wavenumber, fast flow).

As in Wallace's paper on radiation resistance [25] (related by reciprocity to the input power
shown here), modes fall into behavioral groupings based on their modal indices: input power
to odd-odd indexed modes differs from input power to even-even and even-odd modes. The
power input at the (1,1) mode resonance frequency is shown in Figure 4. The input power
rises with increasing flow velocity until roughly aerodynamic coincidence (k«/k.=1). For slow
flows the excitation wavenumber is much larger than the structural wavenumber, so that
nearly equal parts of the plate are forced with positive and negative phase at low velocities,
thus inefficiently exciting the plate. At high speeds, the input power asymptotically
approaches the value predicted for afully correlated pressure field (shown with a red asterisk
on the right side of the plot). For very high flow velocities, the excitation wavenumber tends
toward zero, asisthe case for fully correlated (i.e. plane wave) excitation of the plate.

The right side of Figure 4 shows the x component of the wavenumber spectra of the (1,1)
plate mode and the Corcos model in the flow direction for aerodynamic coincidence.
Increasing the flow velocity would move the convective ridge (the peak in the excitation
spectrum) to the left, while decreasing the flow velocity would move it to the right. The
convective ridge indicates that most of the energy in the Corcos model is contained in
wavenumbers corresponding to the flow's convective velocity. The plate mode's wavenumber
spectrum is a measure of the wavenumber sensitivity of the mode. High values indicate that
the mode accepts energy well at a given wavenumber, while low values indicate that the mode
is not susceptible to excitation at that wavenumber. A mode couples most efficiently to a
turbulent flow when the convective ridge is aligned with the peak in the mode's wavenumber
spectrum (aerodynamic coincidence, which is the condition shown in the figure).

The power input at the (3,1) resonance frequency is shown in Figure 5. The input power at
this frequency, again, increases with increasing flow velocity until coincidence. At
supersonic conditions (k«>k.), the input power oscillates with increasing flow velocity until it
eventually converges to a constant input power corresponding to plane wave (fully correl ated)
excitation. The reason for the oscillation in input power is easily observed in the wavenumber
spectra shown in the right side of Figure 5. The trough in the input power that occurs just
above coincidence occurs at a wavenumber ratio of 3.23. At this wavenumber ratio, the
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convective ridge aligns with the dip to the left of the principle peak of the modal wavenumber
spectrum. In other words, for a wavenumber ratio of 3.23 (where alocal minimum of input
power occurs) most of the energy in the excitation model is contained in wavenumbers to
which the (3,1) plate mode (in the flow direction) is insensitive. Thus, at this wavenumber
ratio, power must be input to other, non-resonant modes. These modes accept less power than
at frequencies close to their resonance frequencies. The input power, therefore, shows a dip.

Above a wavenumber ratio of 3.23, the convective ridge is located over the leftmost plateau
of the resonant mode's wavenumber sensitivity. This plateau has a lower magnitude than the
main peak of the (3,1) mode spectrum. As such, the mode is less coupled to the flow for
extremely fast flow velocities. This s reflected in the input power plot, where at high flow
velocities, the input power approaches a lower value than at coincidence. A more intuitive
explanation of this lower value may be made in physical (as opposed to wavenumber) space.
At high flow velocities, the three velocity antinodes (peak response locations) of the (3,1)
mode are forced by a pressure field of nearly uniform phase. As such, the middle third of the
plate is effectively being forced 180 degree out of phase with the left and right thirds of the
plate. At coincidence, however, the convective and structural wavenumbers are equal in the
flow direction. Therefore, at coincidence, al three velocity antinodes are being forced in
phase with each other by the pressure field, resulting in stronger coupling to the flow and
greater input power. This phenomenon will beillustrated graphically in the next section.

Figure 6 shows the input power and wavenumber spectra at the (4,1) plate resonance
frequency. They are included to show the difference between the coupling of odd-odd and
even-odd modesto a TBL flow excitation. The input power at this frequency rises as the flow
velocity increases toward coincidence and goes through a region of oscillation as k. becomes
smaller than k. After the region of oscillation, the input power decreases steadily with
increasing flow velocity, eventually reaching a steady value corresponding to the power input
by a fully correlated wavefront. The decrease of input power with increasing velocity is
explained by the (4,1) mode's wavenumber spectrum. Modes with even indices in the flow
direction exhibit low wavenumber rolloff, unlike odd ordered modes. This is because, for
even order modes, equa portions of the plate are being forced with positive and negative
phase by a fully correlated wave front. As such, the contributions of the resonant mode and
al other even indexed modes vanish for relatively high flow velocities. This leaves only the
odd ordered (non-resonant) modes to contribute to the response (and the input power) of the
plate. It has been shown for the (1,1) and (3,1) resonances that these modes have a finite, zero
slope wavenumber sensitivity at low wavenumbers. Thus, as shown in Figure 6, the input
power at the resonance frequencies for even ordered modes should approach a constant, abeit
lower value than for the odd resonance frequencies at high flow velocities.

Several additional observations regarding input power versus flow velocity should be made.
First, the number of peaks and nulls in the input power curve below its fully correlated limit
should increase with increasing mode index in the flow direction. Specifically, the number of
peaks in the input power curve are equa to the number of peaks in the resonant mode's flow-
direction wavenumber spectrum below the primary wavenumber peak. Also, it should be
noted that the input power (particularly for slow flows) will vary depending on the excitation
model chosen. Recall that the Corcos TBL model used here tends to predict stronger content
in the low wavenumber region than various other models [24]. As such, the input power
predicted for slower flows in this paper is higher than that which would be predicted using
other TBL models.
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4.2  Effectsof Convective Velocity on Sl Fields

Figure 7 and Figure 8 show intensity simulations at the (3,1) resonance frequency for flow
speeds of 10 to 50% of the bending wave speed in the plate (subsonic conditions). The
figures show (@) an example of the correlation of the TBL pressure field with a reference
point at the plate center, (b) the structural intensity field, shown as a vector array
superimposed over a contour of intensity magnitude, (c) the distribution of power input to the
plate, and (d) the divergence of the intensity field. The three lobed mode shape pattern of the
(3,1) mode is clearly visible in Figure 7, and has fewer oscillations over its length than the
pressure excitation. Theintensity field shows a broad vortex on the left side of the plate, with
intensity converging to the damper in the upper right quadrant of the plate. The divergence
plot clearly shows the location of the damper, and shows that power is injected over most of
the plate.

Figure 9 shows a simulation at aerodynamic coincidence. The intensity magnitude scale
reaches a maximum near this point, as seen in the input power curve in Figure 5. While the
intensity amplitudes change, it is interesting to note that the intensity field patterns do not
change significantly for 0.1 < ke/k; < 1.0.

Figure 10 shows the simulated intensity field for supersonic conditions (ks«/k. = 10). For high
speed TBL flow excitation, the intensity field differs dightly from the subsonic conditions,
with a null appearing between the large intensity vortex on the left, and the power travelling
into the damper on the right. For subsonic flows, the circulation of energy on the left two
thirds of the plate is coupled to the right third of the plate. For the fast flow cases the input
power distribution shows power leaving the plate from its central third (the blue region in the
input power plot). In these cases, the divergence plots show a distributed energy sink over
this third as well (the orange region in the center). It appears that some of the energy entering
the plate in the left third of the plate exits the plate in the central third. The energy entering
the plate in the right third appears to exit the plate via the damper. For slower flows (Figures
7-9), the middle third of the plate is not excited out of phase with the outer thirds. As such,
the energy from the left third does not exit the plate in the middle, and instead must be
dissipated by either materia losses or the damper. A simulation for a fully correlated
excitation field is included for comparison purposes in Figure 11. The simulated intensity
field for the fully correlated excitation is similar in shape and magnitude, as expected, to the
Corcos excitation when the flow speed greatly exceeds the bending wavespeed in the plate.

5 SUMMARY AND CONCLUSIONS

Anaytic simulations of the structural intensities and power flows of a TBL excited flat
rectangular baffled simply supported brass plate are presented. The simulations use methods
developed by the authors previously [19,20], and combine transfer functions between pressure
loads and plate responses (displacement, rotation, moment, and shear) with cross-spectral
density matrices of forcing functions. The power injected into the plate at frequencies
corresponding to the resonances of several low order modes is shown. Power input peaks
near convective flow velocities which coincide with the peak wavenumbers of the mode
shapes, and converges to constant values at very high convective velocities. Structural
intensity patterns are nearly constant for a wide range of flow velocities, only changing when
flow velocities are very high, where the pressure |oads over the plate become nearly perfectly
correlated.
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Figure 7: Simulated S-1 (upper right), pressure correlation (upper left), distributed input power (lower
|eft), and divergence (lower right) at (3,1) resonance frequency, k/k.=0.1 (subsonic flow).
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Figure 8: Simulated S-I (upper right), pressure correlation (upper left), distributed input power (lower
|eft), and divergence (lower right) at (3,1) resonance frequency, k,/k.=0.5 (subsonic flow).
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