
2831 
 

 
  

 
 

Tutorial on infinite panel sound transmission loss simulations 
 
Stephen A. Hambrica)  
Hambric Acoustics, LLC

 
Infinite panel theory often simulates finite panel sound transmission loss (TL) quite 
accurately, even for panels with complex cross sections.  This tutorial explains how to easily 
compute infinite panel TL for different angles of sound incidence.  The tutorial also 
explains how to compute statistical averages of transmitted power due to impinging sound 
with random angles of incidence.  Concepts like coincidence frequency, and its 
corresponding TL degradation; low-frequency mass law behavior; and the effects of 
adding damping to a structure are explained.  Images of incident and radiated sound, along 
with panel vibrations, are used to illustrate the basic theory. 
 
1 INTRODUCTION 
 
 Sound power transmission loss (TL) is simulated and measured for many types of noise 
barriers, including windows, doors, walls, and enclosures designed specifically to mitigate sound 
from noisy machinery.  Expensive computational models are often constructed and analyzed to 
estimate TL.  TL measurements are also expensive, and can be corrupted by background noise 
from adjacent noise sources.  Before complex models or measurements are pursued, basic 
infinite panel TL theory should always be exercised to estimate TL, and approximate the effects 
of design modifications which add damping or mass.  This tutorial explains basic infinite panel 
TL theory, and is an expanded version of the material in the general sound-structure interaction 
tutorial by Hambric and Fahnline1 which appeared in Acoustics Today Magazine in 2007. 
 

                                                 
a) email: hambricacoustics@gmail.com
 
 
 
 



2832 
 

2 INFINITE PANEL TRANSMISSION LOSS THEORY 
 
2.1 Single angle of incidence 
 
 Consider the classical problem of a flat infinite panel that is struck by an incoming acoustic 
wave.  There are three pressure waves next to the panel surface – the incident wave, a reflected 
wave, and a wave re-radiated by the structure, which has been forced into vibration by the 
incident and reflected waves.  The sum of the incident and reflected waves forms a ‘blocked’ 
pressure on the surface, and if the surface is rigid, the blocked pressure field is, in fact, the total 
pressure.  However, if the structure is flexible and vibrates, it radiates a third pressure wave, 
which sums with the blocked pair to form the overall pressure field. 
 Figure 1 shows the incident and reflected waves for a 30 degree angle of incidence (the 
angle is taken from the direction normal to the plate), along with the total blocked pressure field 
acting on a rigid surface.  Notice how the two waves combine to form a standing wave pattern in 
the direction normal to the surface.  In this example, the standing wave pattern of total blocked 
pressure propagates upward in the direction parallel to the surface at a speed cosin(), where co is 
the acoustic wave speed and  is the angle of incidence. 
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Fig. 1 – Blocked pressure field acting on a plate (right side of images) at a 30 degree angle of 
incidence.’+’ and ‘-‘ signs indicate phase variations in the waves. 
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 Infinite plate theory can be used to estimate the plate vibration caused by the blocked 
pressure field: 
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where zfluid and zplate are the impedance (pressure/velocity) of the acoustic space and the plate.  
The fluid impedance depends on the pressure wave’s angle of incidence and the fluid’s 
characteristic impedance: 
 

 2/ 1 sinfluid o o incidentz c   ,  (2) 

 
and the infinite plate’s impedance at frequency  is 
 

 4 4 2( sin ) / ( sin ) /plate o incident o incidentz D k i D k h           , (3) 

 
where D is the flexural rigidity,  is the structural loss factor,  is the panel mass density, h is the 
plate thickness, and ko is the acoustic wavenumber /co. 
 Examining the equation shows that the plate vibrates most when its structural impedance is 
minimized.  This occurs when the stiffness and mass terms in the plate’s impedance cancel each 
other, or when 4 2( sin )o incidentD k h   .  To find this frequency, we replace ko with /co, and 

find that: 
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co looks similar to a plate’s critical frequency, and to its critical radiation angle for frequencies 
above coincidence.  In fact, when incident is 90 degrees (where the acoustic waves propagate in 
the plane of the plate, or ‘graze’ the plate), the coincidence frequency is actually the critical 
frequency.  The critical frequency is sometimes called the lowest coincidence frequency.  This 
means that there is no single frequency where the plate vibrates most – there are many of them, 
each of which corresponds to a different angle of incidence. 
 Now, what happens when there is also fluid on the other side of the plate?  How much of 
the incident sound gets through the plate to the other side?  This is the classic sound transmission 
loss (TL) problem, and may be solved easily for an infinite plate, and not so easily for a finite 
one.  Fahy and Gardonio2 provide a derivation of the sound power transmission coefficient 
through an infinite plate in their textbook, and we repeat the result here (assuming the fluids on 
both sides of the plate are the same): 
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The , h, and D terms in the equation represent the damping, surface mass density, and stiffness 
(flexural rigidity) of the plate, respectively.  The amount of sound transmitted depends on the 
fluid properties, the structural properties, frequency (recall ko=/co), and the angle  of the 
incident pressure wave with respect to the plate. 
 Some typical transmission loss (TL) plots for a thin metal panel, computed as the logarithm 
of the inverse of the transmission coefficient, 10log10(1/), are shown in Figure 2.  For acoustic 
waves not normally incident to the plate, sharp dips appear in the transmission loss.  These dips 
correspond to sharp peaks in the transmission coefficient, and act as strong pass-bands of 
incident sound.  The dips are at the coincidence frequencies of the plate.  Recall from Equation 4 
that the coincidence frequencies depend not only on the plate, but on the angle of incidence of 
the sound waves.  As the angle of incidence changes, the coincidence frequency and the 
frequency of the transmission loss dip changes as well.  Note that there is no coincidence dip for 
normally incident waves, since the acoustic waves do not propagate along the plate (more on this 
later). 
 At low frequencies, the mass term in equation 5 determines the transmission loss, which 
increases with the square of frequency (6 dB/octave, or 6 dB for each doubling of frequency).  At 
high frequencies, above the coincidence dip, plate stiffness is dominant, and the transmission 
loss increases with the 6th power of frequency, or 18 dB/octave.  Figure 2 shows what most 
people already know from experience – it is hard to keep low-frequency sounds from 
propagating through barriers.  Consider this the next time you close a door to block out sound 
from a hallway or another room.  You stop hearing mid and high frequency sounds, but still hear 
‘muffled’ low-frequency noise. 
 

 
 

Fig. 2 – Typical transmission loss plot for variable angles of incidence.  Grazing incidence 
refers to acoustic waves that are nearly in the plane of the plate. 
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 To visualize the sound field incident on and transmitted by an infinite plate, Figure 3 
compares pressure and displacement of a plate at two conditions:  well below, and near 
coincidence.  In the example, I have set the plate loss factor equal to 0.  Try setting loss factor to 
zero and computing the transmission coefficient in Equation 5 at coincidence (remember, this is 
where the acoustic wavenumber in the plane of the plate matches the free bending wavenumber 
in the plate, or kosin = kb).  You should compute a transmission coefficient of 1, which is perfect 
sound transmission! 
 The strength, or depths of the coincidence dips depends strongly on the plate’s loss factor 
.  Designers of noise barriers (windows, doors) try to minimize the depth and breadth of the 
coincidence dips.  The most common approach for mitigating coincidence dips is using 
constrained layer damping, or CLD.  Automotive glass in luxury vehicles, and glass in high-end 
office buildings usually have a thin layer of clear vinyl sandwiched between two panes of glass 
to increase structural damping.  You’ll learn more about the effects of damping in Section 2.2. 
 For zero, or normal angle of incidence (sound waves normal to the plate’s surface), the 
transmission coefficient is not indeterminate (you might think it would be, since there are several 
terms in Equation 5 that divide by sin()).  The transmission coefficient for normal incidence 
actually simplifies to: 
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which corresponds to the well-known ‘mass law’.  The mass law transmission loss is the highest 
curve (normal incidence) in Figure 2, and increases with the square of frequency over all 
frequencies, never showing a coincidence dip. 
 To improve transmission loss, many noise control engineers use two panels, particularly in 
windows.  Called ‘double glazing’, the panels are separated by an air (or other gas) gap.  Since 
transmission loss is additive (just add the TL values, or multiply the transmission coefficients 
together before computing TL), there is a substantial improvement, much more so than simply 
increasing the thickness of a single panel.  However, most double panel systems have different 
panel thicknesses so that the coincidence dips of the two panels occur at different frequencies.  
While this leads to two pass-bands for incident sound, it is generally preferable to have two weak 
pass bands rather than one very strong one. 
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Fig. 3.  Incident and transmitted sound fields around an infinite 25 mm thick steel plate, 30 
degree angle of incidence.  Top – at 50% of coincidence, Bottom – at coincidence. 
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2.2 Multiple random angles of incidence 
 
 In most practical situations, acoustic waves impinging on a panel do not always arrive from 
the same angle.  Consider a window in an office building or a hotel.  Sound waves arrive from all 
angles, with a random distribution of the angles over time (imagine incident sound from passing 
airplanes and automobiles, reflecting off of adjacent buildings).  Therefore, statistical integration 
over all incidence angles is used to estimate a random angle of incidence transmission loss: 
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 Figure 4 shows several TL curves for varying angles of incidence for a 25 mm thick steel 
plate in air with a 0.005 loss factor, along with the diffuse field incidence computed using 
Equations 5 and 7.  Compared to single angle of incidence TL curves, the diffuse field curve has 
nearly the same slope at low frequencies (following the mass law), but a much smaller slope 
above coincidence.  The random incidence TL curve above coincidence is an integrated average 
of all of the dips, reducing the effective slope. 
 Adding structural damping to a panel has different effects on the TL for a single angle of 
incidence, and a TL statistically averaged over all incidence angles.  Figure 5 shows the same 
panel from Figure 4, but with damping increased by a factor of 10 to 0.050.  The individual 
coincidence dips are mitigated by the damping, but the TL below (mass controlled) and above 
(stiffness controlled) coincidence is unaffected.  However, the integrated TL (Equation 7) above 
coincidence increases with added damping, since the integration is over a distribution of 
individual coincidence dips over all angles.  The net effect is more easily seen in Figure 6, which 
compares the statistically integrated TL curves for the different damping coefficients. 
 Adding mass to a structural panel does two things:  (1) increases the lowest coincidence 
frequency by slowing down the structural waves, and (2) increases the panel impedance below 
coincidence.  The example in Figure 7 shows the impact of doubling the panel surface mass 
density. 
 There are some well-known low and high frequency approximations for the random 
incidence TL.  For low frequencies: 
 
 0 10 0( ) 10log (0.23 )d cTL f f TL TL         (8) 
 
where TL0 is 10log10(1/=0), or the mass-law normal incidence transmission loss.  Since 
transmission loss is maximized (transmission coefficient is minimized) at normal incidence, the 
random angle of incidence transmission loss is a fraction of that at normal incidence.   
 For high frequencies, Cremer’s approximation works well: 
 
    0( ) 10 log / 1 10log( ) 2d c cTL f f TL f f dB           (9) 

 
where  fc is the lowest coincidence, or critical frequency.  Figure 8 compares the low and high 
frequency approximations with the integrated TL. 
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Fig. 4.  Random diffuse field incidence TL for a 25 mm thick steel panel in air with loss factor of 
0.005 in dark blue, with several TL curves at various angles of incidence in light black. 
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Fig. 5.  Random diffuse field incidence TL for a 25 mm thick steel panel in air with loss factor of 
0.050 in dark blue, with several TL curves at various angles of incidence in light black. 
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Fig. 6.  Random diffuse field incidence TL for a 25 mm thick steel panel in air with variable 
damping. 

 
 

Fig. 7.  Random diffuse field incidence TL for a 25 mm thick steel panel in air with variable mass 
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density. 
 

 
 

Fig. 8.  Random diffuse field incidence TL for a 25 mm thick steel panel with loss factor of 0.005 
compared to low and high frequency approximations. 
 
 
3 FINAL THOUGHTS 
 
       Minimizing sound transmission through structures is a common problem in many industries.  
Here are just a few examples: 
 

- sound from an adjacent room in a building transmitting through walls, ceilings, and floors 
into other rooms; 

- engine noise transmitted through an automobile frame/paneling into the interior; 
- rotorcraft transmission noise transmitted through the roof into the interior; and 
- rocket pressure pulsations transmitted through the walls of a launch vehicle into a 

payload interior. 
 
There are many others.  These more complex problems often must be solved using numerical 
methods like finite element and boundary element analysis.  However, the basic principles 
described here should always be kept in mind when diagnosing and mitigating transmission loss 
problems, and sometimes simple infinite panel theory may be sufficient to analyze complex 
problems3.  Remember that panel mass dictates how well low frequency sound transmits through 
panels, and panel damping most strongly affects high frequency (at and above coincidence) 
noise.   
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